skip to main content


Search for: All records

Creators/Authors contains: "Dabrowski, Piotr Wojciech"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The systemic challenges of the COVID-19 pandemic require cross-disciplinary collaboration in a global and timely fashion. Such collaboration needs open research practices and the sharing of research outputs, such as data and code, thereby facilitating research and research reproducibility and timely collaboration beyond borders. The Research Data Alliance COVID-19 Working Group recently published a set of recommendations and guidelines on data sharing and related best practices for COVID-19 research. These guidelines include recommendations for researchers, policymakers, funders, publishers and infrastructure providers from the perspective of different domains (Clinical Medicine, Omics, Epidemiology, Social Sciences, Community Participation, Indigenous Peoples, Research Software, Legal and Ethical Considerations). Several overarching themes have emerged from this document such as the need to balance the creation of data adherent to FAIR principles (findable, accessible, interoperable and reusable), with the need for quick data release; the use of trustworthy research data repositories; the use of well-annotated data with meaningful metadata; and practices of documenting methods and software. The resulting document marks an unprecedented cross-disciplinary, cross-sectoral, and cross-jurisdictional effort authored by over 160 experts from around the globe. This letter summarises key points of the Recommendations and Guidelines, highlights the relevant findings, shines a spotlight on the process, and suggests how these developments can be leveraged by the wider scientific community. 
    more » « less
  2. Abstract Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses. 
    more » « less